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Solutions are presented for creeping flows induced by two- and three-dimensional 
horizontal and vertical momentum jets in a linearly stratified unbounded 
diffusive viscous fluid. These linear problems are solved by replacing the momen- 
tum jet by a body force singularity represented by delta functions and solving 
the partial differential equations of motion by use of multi-dimensional Fourier 
transforms. The integral representations for the physical variables are evaluated 
by a combination of residue theory and numerical integration. 

The solutions for vertical jets show the jet to be trapped within a layer of 
finite thickness and systems of rotors to be induced. The horizontal two- 
dimensional jet solution shows return flows above and below the jet and a pair 
of rotors. The three-dimensional horizontal jet has no return flow a t  finite 
distance and the diffusive contribution is found to be almost negligible in most 
situations, the primary character of the horizontal flows being given by the 
non-diffusive solution. Stokes’s paradox is found to be non-existent in a density- 
stratified fluid. 

1. Introduction 
The need for an understanding of the behaviour of jets in density-stratified 

fluids has become necessary in the study of ocean outfalls and reservoir mixing 
systems. Buoyant turbulent jets have received a great deal of attention since 
the paper by Morton, Taylor & Turner (1956) but there is apparently little 
knowledge of the growth rate of neutrally buoyant and horizontal momentum 
jets in stratified fluids. These are extraordinarily difficult problems due to the 
differential growth rates in the vertical and horizontal directions and it was felt 
that in the same way that laminar jets in homogeneous fluids cast some light 
on the behaviour of turbulent jets, a study of laminar jets in stratified fluids 
might well be fruitful. 

Flows generated by sources of momentum in viscous fluids have been studied 
for over 100 years. The portion of Stokes’s solution for the slow motion of a 
sphere can be interpreted as the flow generated by a weak momentum jet, the 
so-called stokeslet solutions of the Navier-Stokes equations (Hancock 1953). 
An exact solution for a horizontal three-dimensional momentum jet was discussed 
by Landau (1944) following Slezkin’s (1934) integral of the Navier-Stokes 
equation and also by Squire:(1951). This solution reduces to Schlichting’s (1933) 
boundary-layer solution for strong jets and to the stokeslet solution for weak 
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jets. A corresponding integral for two-dimensional momentum jets apparently 
has not to date been found. 

Little work has been done on the analogous problems in stratified fluids. Long 
(1959) neglected inertial forces and made the boundary-layer assumption to 
find a similarity solution for the flow induced by a body moving at constant 
speed in a stratified fluid and later, (Long 1962) extended this boundary-layer 
solution to include diffusive effects. Janowitz (1968) has recently found a solu- 
tion for the flow induced by a small two-dimensional obstacle moving horizontally 
in a linearly stratified, viscous, non-diffusive fluid. The Janowitz solution is in 
effect the two-dimensional oseenlet solution for a linearly stratified, viscous, 
non-diffusive fluid. 

A full non-linear analysis or even a non-linear boundary-layer analysis for 
momentum jets in stratified fluids is not easy and as will be seen later is not 
practicable for vertical jets. For horizontal jets a boundary-layer type solution 
is possible for the two-dimensional jet, as Long (1959) has shown, but at first 
sight such an analysis for a three-dimensional jet appears difficult. At this 
juncture not even Stokes’s problem has been solved in a stratified fluid and 
in the same way that a study of this problem in viscous fluids leads to an Oseen 
type analysis and later a boundary-layer analysis it was felt that a study of the 
stokeslet solutions may well be worthwhile, especially for the three-dimensional 
jets. Thus, this paper is an attempt to find the corresponding stokeslet solutions 
for a linearly stratified viscous diffusive fluid. The problem is made more in- 
teresting than the corresponding viscous flow problems by the fact that the 
solutions depend upon the relative orientation of the stokeslet and the gradient 
of the density field. 

The problem is solved by introducing the momentum jets as body force 
singularities in the linearized equations of motion. Multi-dimensional Fourier 
transforms are then used to convert the differential equations to algebraic equa- 
tions which are easily solved. The Fourier inversion is carried out by doing one 
integration directly (necessary in three-dimensions) using residue theory on 
another and finally employing numerical integration. The stream function and 
density anomaly are computed and contours plotted to depict the flow fields. 
The flow fields are found to be symmetric in both the horizontal and the vertical 
co-ordinates and there are systems of rotors and reverse flows induced except 
for the three-dimensional horizontal jet, which has no reverse flow at finite 
distance. All velocities are found to vanish at  infinity so that Stokes’s paradox 
does not occur in stratified fluids. 

2. Statement of the problem 
We consider an unbounded Newtonian diffusive density-stratified fluid for 

which the equations of motion are the following: the equation of mass conserva- 
tion, 

v. (pu)  = DV2C, 

where p is the fluid density, u the velocity vector with components u, v, w and C 
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is the concentration of a tracer causing the density variation, and D the molecular 
diffusivity of the tracer; the equation of conservation of tracer, 

v. (Cu) = DVZC; ( 2 )  

p(u.V)u = -Vp'+,uV2u-pgj+X, (3) 

and the equation of momentum conservation 

where p' is the fluid pressure, ,u is the dynamic viscosity and X the body force 
per unit volume, j is a unit vector in the upward vertical direction. For small 
density changes the density and tracer concentration can be related by an equa- 
tion of state, 

where po is a conveniently chosen reference density and Co its associated con- 
centration, (p 2: 0.67 for a sodium chloride solution at  20" C). 

Equations (1) and ( 2 )  are only valid in regions containing no sources or sinks 
and are suitable for use here where singularities of mass or concentration are 
excluded. These two equations can be rewritten in the form 

(4) P-Po  = P(C-Co), 

v. u = aDV2(p/po), 
u . Vp = D( 1 - @C/p0) V'p, 

where a = p o ( l  - / l ) / / l (pO -/lCo) N 0.5 for a 2 % by weight sodium chloride solu- 
tion in water at 20 "C, In  the following we ignore the right-hand side of ( 5 )  and 
assume aPC/po < 1 in (6). We consider the case now when the density distribution 
can be written 

and the body force vector has the form 

(7) PIP0 = 1 - + s'@, Y, z ) ,  

X = (Xi + Xj + Zk) 6(x), (8) 

where a system of right-handed Cartesian co-ordinates has been chosen with the 
y co-ordinate vertical. The basic density profile is linear with a constant slope 
and s'(x, y, x )  is the density anomaly arising from the presence of the body force 
singularity with components X ,  Y ,  and 2 and denoted by the Dirac delta 
functions, 6(x). The body force singularity may be considered to be a point 
source of momentum located at  the origin, i.e. a momentum jet. Under these 
circumstances (6) and (3) take the form 

u . VS' - BV = DV2s', (9) 
and p ( u  . V) u = - V P  - pOgs'j + X +,uV2u, 
where P = p'+p,g(y- i E y 2 ) .  

(As Janowitz (1968) has stated, the basic linear density profile as specified by 
(7)  is certainly not possible over an extreme range of y values, but is a good 
approximation over a large enough distance that solutions can be obtained 
representing, say, the behaviour in the centre of a hyperbolic tangent density 
profile.) 

An investigation of the validity of a linearization of these equations of motion 
can be carried out in non-dimensional variables chosen so that the linear terms 
are all of an equal order of magnitude. 
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Consider the two-dimensional case first and suppose that F is a measure of 
the source strength per unit length. Choosing a characteristic length 

2 = W I P o g 4 4  (11) 

a characteristic velocity uo = Flp,  

and letting s = (p0gDp/CF2)*s’, (12) 

Qu.VS-V = V2s, (13) 

(14) 

implies the equations of motion take the form, in dimensionless variables, 

Q(D/v)  (u. V) u = - V p  - sj + F(,)&(x) + V2u,  

where 

and F,,, = (Xi+ Yj) F-l. (17)  

s = (pD/BFl)s’, (18) 

In three dimensions we choose the same length scale 1, a characteristic velocity 
Flpl and write 

to get forms similar to (1 3) and (14) except that now 

F(3) = (Xi + Yj + Zk) F-l. (21) 

Since for most liquids D/v  is not large, the criterion for the linear solutions to 

The linearized equations (13) and (14) with the appropriately chosen F(,) are 
be appropriate is that Q 4 1, the appropriate Q being chosen in each case. 

most easily solved by use of the multi-dimensional Fourier transform 

m 

(D(K) = (2m)-+-f $(x) exp (iK. x) dx, 

where ?a takes the value 2 or 3 depending upon whether x and K are two- or 
three-dimensional vectors. Application of this Fourier transform leads to 
algebraic equations for the transformed variables U = ( U ,  V ,  W ) ,  P ,  and S in- 
volving only the constant force vector F = F(n,/(27r)4n. The solutions to these 
algebraic equations are 

-m 

K ~ U  = F+{j[(K. j) ( K .  F) - K2(j .F)] 

+K[(K. j) (j .F) - ( K ~ +  1) (K. F)]}/[K~(K~+ 1) - (j  .K),], (22) 

P = -i[(K.j)(j.F)-(K4+1)(K.F)]/[K2(~4+1)-(j.K)2], (23)  

(24) 

We now consider some particular types of force vectors corresponding to various 
momentum jets, when F takes the appropriate value. 

S = - [(K . j) (K . F) - K2(j . F)] / [K~(K~ + 1) - (j . K),]. 
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3. Two-dimensional jets 

and the results are summarized in table 1. 
For a two-dimensional jet the force function F takes the form given by (17 )  

Transform Coefficient of 21271 Coefficient of F/2n 

U K E K P / d  - K1 K2 K 2 / d  

V - K1 K z  K 2 / d  K: K 2 / d  

P i K z ( K 4 +  l ) / d  i K 2 K 4 / d  

S - K1 K z l d  K W  
Y + i K z  K 2 / d  - i K 1  K a / d  

TABLE 1. Fourier transforms for a two-dimensional jet, d = K ~ + K ; ,  = XF-1, f = YF-1 

h a g :  K, t 

(4 
FIGURE 1 .  Location of the zeros of K" + K~ iven by equations (25) and plotted in the K~ 

plane when K~ = 0. The arrows and lines give the trajectories of the zeros as K* increases 
from zero. 

.g 

The physical variables, including the stream function Y, can be found using 
the Fourier inversion integral 

#(x) = (27r)-tn @(K) exp ( - i ~ .  x) d K ,  I", 
where in this case n = 2 and the integral is over two dimensions. All the transforms 
have the same poles and they are located at  the zeros of K~ + K?, which are 

q1), (2) = [($)* sinh 4014 exp ( & Bin-) = pexp ( -e &in-), 
KW, (5) = r exp ri(*n k #,I, 
K(p), (6) = ex?? ['(#;. k #)I, 
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and are located as shown in figure 1 and where 

(26) 

$ = garctan(2cosh~8/(2K2,+p~)), 

8 = arcsinh ( 3 8 4 ~ 3 ,  

r = (pj  + 1 ) k  

The integrals can now be evaluated in each half-plane corresponding to the 
sign of x by a straightforward but tedious application of residue theory. The 
results for variables of interest are found in a form exemplified by (27) 

where, for example, for the two-dimensional horizontal jet stream function 
- 

f(x,y) = Y ( x ,  y), K(y, t )  = tsinyt, L(t) = p-B, A = X, t = K2, 

M ( x ,  t )  = [3-h sinh ($8) cos ($ + rlxl sin $) 

- cosh (38) sin (Q + ~1x1 sin q5)]/r cosh ($8). 

4. Results for two-dimensional jets 
Solutions for two physical variables were evaluated by numerical integration 

and the results are presented in terms of contours of stream function and density 
anomaly. 

The integrals were evaluated over the range x = 0 (0.5) 20, y = 0 (0-5) 15, using 
a double precision 16-point Gaussian integration formula with a period ?rly and 
summing successive contributions until less than lo-*. A contouring subroutine 
was used to plot the curves of constant stream function and constant density 
anomaly. For x = 0, the integral for Y is very slowly converging and a method 
given by Longman (1956) for the numerical evaluation of oscillatory integrals 
was used. Total computer time to cover the x, y field as specified above was 
approximately 90 seconds. 

For the horizontal jet the most striking result is the formation of rotors above 
and below the jet. This is shown in the detailed structure in the neighbourhood 
of the jet presented in figure 2 .  This is in keeping with the experiments by Long 
(1959) where a series of rotors is seen above a moving ridge at the base of a. 
density stratified fluid. The experiments show the rotor to be pushed to the 
rear of the ridge and to be somewhat distorted in shape from that shown here. 
However, the basic phenomenon is present even in the creeping flow presented 
here. There appears to be only one rotor above the jet in this linear solution case. 
This is the characteristic feature of the density stratified flow, for a rotor such 
as this does not appear at  a finite distance from the jet in a non-stratified viscous 
fluid. It is apparent that the effect of the vertical density gradient has been to 
confine the return flow to a finite layer about the source point thus inducing the 
rotors near the jet. 

The density anomaly for the horizontal jet is given in figure 3. The effect of 
the jet is to introduce a positive density anomaly above the jet downstream and 
a negative anomaly below the jet downstream; the signs are reversed upstream. 
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FIGURE 3. Contours of density anomaly s for a two-dimensional horizontal jet, axes are 
non-dimensional co-ordinates 2 and y. 
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FIGURE 4. Contours of non-dimensional stream function Y for a two-dimensional vertical 
jet. axes are non-dimensional co-ordmates x: and y. 
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FIGURE 5. Contours of density anomaly 8 for a two-dimensional vertical jet, axes are non- 
dimensional co-ordinates x and y. 
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We can therefore expect the downstream jet to be significantly more unstable 
than the upstream jet. This result should be valid for the non-linear jet also. 

Solutions for the vertical two-dimensional momentum jet are given in figures 4 
and 5. Figure 4 shows the stream function contours for a vertical jet at the origin 
and in this case there is a rotor on each side of the jet, clockwise on the right and 
counterclockwise on the left. The fluid has a, limited height of rise and two further 
rotors of opposite sign located above these. The height of rise is independent of 
the strength of the jet and the total thickness of the primary layer will, of course, 
be twice that shown. The anomaly shows the characteristic plume-like structure 
close to the momentum source but departs markedly from this away from the 
source. The vertical momentum flux apparently supports the positive density 
anomaly until such a point that the total negative buoyancy overcomes it 
whereupon the fluid falls back down. There appears to be a stability problem on 
the lateral fringes of the jet where it is seen a wedge of lighter fluid is overlaid 
by heavier fluid. 

A full scale stability analysis of the two-dimensional problems above would be 
difficult and is beyond the scope of this work. However, we can define a local 
perturbation Rayleigh number a t  locations where an adverse perturbation 
density gradient exists. The depth of a layer containing such a gradient appears 
to be bounded (see figures 3 and 5), and will be proportional to (,uD/p,gs)t. The 
magnitude of any adverse gradient is equal to 

and it is apparent that las/ayl is also bounded (see figures 3 and 5), so the local 
Rayleigh number will be proportional to 

Q = - . [ - - I .  P pD 

PD P O P  

Thus, the convective stability parameter is seen to be exactly the parameter 
we found controlling the applicability of the linear solution. If Q < 1 then the 
linear solutions found are not only valid but would appear to be at least con- 
vectively stable also. Obviously, other parameters will also enter the overall 
jet stability problem. 

These solutions are for linear equations and can be superimposed in any way. 
Thus solutions for jets at  any angle are possible by taking an appropriate linear 
combination of the vertical and horizontal solutions. 

5. Three-dimensional jets 
In  this case the force function F takes the form given by (21). The corresponding 

values of the transformed velocity vector, pressure field and density anomaly are 
given in table 2. 

It will be noted that the transforms for a vertical jet are symmetrical in K~ and 
K~ as we would expect for an axisymmetrical problem, but this is not true for 
the horizontal jet. It is this latter problem which is of major interest since it is a 
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truly three-dimensional problem. Fortunately, however, we note that the de- 
nominators of the transformed variables are symmetric in K~ and K~ and this 
symmetry can be exploited in the Fourier inversion integral to facilitate the 
integration. 

Transform coefficient X/(27r)% Coefficient P/(27r$ 

K a U  [ ~ ( K * ( K ~ + K ~ + K ~ - ] K ~ K ~ K *  ( ~ ~ j  - K~ K ~ K ) / ~  

- k K 1 K a ( K 4 +  l)]/d 
P iK1( 1 f K 4 ) / d  iK,K4/d  

S - K1 K2 ld  ( K z  - Ki ) /d  

TABLE 2.  Fourier transforms for a three-dimensional jet, d = K~ + K: + K:, 8 = XP1, 
7 = YF-'. 

Let X = g C O S h ,  K1 = t C O S 0 ,  

x = gsinh, K~ = tsinw, 

then the inversion integral takes the form 

X ( D ( K 2 ,  t 2 )  tdtdK2dOJ. (28) 

There are two things to note about this integral. First, the w integration can 
be carried out directly when m is an integer, and second, the denominator is 
now in the same form as for the two-dimensional jet case and the zeros are there- 
fore already known. However, in this particular case it is more convenient to 
find the zeros in terms of the other variable and thereby avoid Kelvin functions 
in favour of Bessel functions. The zeros are 

where 

The integrals are evaluated using residue theory as before and the solutions 
have the form 

f ( a > Y )  = Jm W U . , t )  [A(Y,t)exP(- IYI Rsin$)+B(t)exp(-plyl)Idt, (30) 
0 

where, for example, for the vertical axisymmetric jet stream function, 

f (a ,y)  = Y(cr,y), P(C7,t) = gtJ1(crt)/12m, B ( f )  = -tap, 

A(y ,  t )  = 2tb cos ($ - 1 ~ 1  R cos 4 - +7)/R. 
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For the horizontal three-dimensional jet the solutions take the form (x = 1): 

U ( x , y , z )  = (87r)-'{r-'+(r- lyl) [ ~ ( r +  l y l ) ] - ' c o s 2 h + f 1 ( c ~ , ~ )  

- f d a 7  y) 'OS 2h)7  (31) 
v(x, y7 2 )  = (8n)-' cos hf3(0-, y), 

w(x7y7z) = (87r)-1sin 2h{(r- lyl) [T( r+  ly/)]-1-fz(v7y)}9 

dx, y, 4 = (8r)-l cos hf4(g, y), 

(32) 

(33) 

(34) 

where fi, f z ,  f3, f 4  are represented by integrals of the form (30) and 

r = (x2+y2+22)*, 0- = (x2+22): , h = arctan(x/x). 

6. Results for three-dimensional jets 
The overall structure of stream function and density anomaly for the vertical 

three-dimensional jet, when seen in section, is very similar to the two-dimensional 
vertical jet and hence detailed results are not given here. Stagnation points are 
located at y = & 3.786, k 9.404 and 15-807 and there will probably be others 
outside this range but the velocity values are so small that within the third 
layer the fluid is virtually stagnant. The rotor induced by the jet is now of 
course a toroidal one. The density anomaly contours in section are very similar 
to figure 5. 

The results for the three-dimensional horizontal jet are quite interesting. Con- 
sider first of all the explicit part of the solution, 

It may be shown that along with the conditions v = 0, s = 0, these terms are 
the solution for a horizontal stokeslet in a non-diffusive density-stratified fluid. 
There is a pressure singularity on the plane y = 0 which with the viscous terms 
supplies all themomentum transport for the jet. However, this pressure singularity 
in the y-momentum equation must be balanced by a dipole singularity in s on 
the plane y = 0, and it is this singularity which provides the inhomogeneous 
term to generate the solutionsf,, f 2 , f 3  andf,. These latter terms are therefore a 
solution to the diffusive part of the equations. (This is best seen in cylindrical 
polar co-ordinates but will not be shown here.) Thus all the vertical motion in 
the jet is a consequence of the diffusive term in the equations of motion. 

It can also be shown that the asymptotic forms of the f functions are self- 
similar as v becomes large, and in fact, 

fl - 0--+91(C), fz 0-+9Z(C), 

f 3  0--Zq3(C)7 f 4  0--+g4(C), 

where 6 = Iyl/cd; the g functions are plotted in figure 6. 

(37) 
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The relative rates of decay of the diffusive and non-diffusive contributions to 
the solutions can now be assessed. When is large we can ignore the diffusive 
contributions since they may be shown to decay exponentially with large <. 
Hence, for large y at fixed x and x 

( 8 4 4 - 1  (y 9 x,z). 

Alternatively, for small 5, gl(c) and q2(5) approach their constant values and 
the asymptotic behaviour of the horizontal velocities becomes dependent upon 
whether it is x or z which becomes large. If x is large then COB 2h !Y 1 and hence 

whereas if z is large, 
u N (4nlxl)-1+ O(x-5) (x 9 2 ,  y), 

24 (Sl(0) +q2(0))1(8nzQ) ( z  9 x, 9) .  

It is apparent therefore that the diffusive contribution to  the velocity dis- 
tribution can be ignored except on the lateral fringes of the jet. The second result 
above, namely u - (4n]x])-l, is exactly the same as for a stokeslet in a homo- 
geneous fluid. 

It should also be noted that the vertical velocity vanishes exponentially as 
IyJ becomes large but is of O(,+-;-) for large ,+ so that it is always at  least an order 
of magnitude less than the lateral horizontal velocity. This vertical velocity is also 
found to be negative just above the horizontal plane (figure 6 ( c ) )  indicating an 
entrainment flow, whereas the lateral velocity w is seen to be always positive 
for x > 0, z > 0, indicating no lateral entrainment on the plane y = 0. 

The diffusive part of the solution for the horizontal velocity u does contain 
negative portions (figure 6) but these are never large enough to overcome the 
non-diffusive part of the solution; consequently there is no reverse flow at finite 
distance for the three-dimensional horizontal jet. 

This basic difference in behaviour of two- and three-dimensional jets has a 
simple physical explanation. In the three-dimensional jet a return flow at in- 
finity is possible, just as for a jet in a homogeneous fluid, for the fluid pumped 
into x > 0 can return to x < 0 on the plane y = 0 without doing work against 
the density gradient. Thus vertical entrainment into the jet is possible since 
there is a mechanism for the return flow a t  infinite distance. In  a two-dimensional 
jet this is not the case, any fluid pumped into x > 0 cannot return on the plane 
y = 0 and also cannot return at  infinite distance vertically because of the con- 
straining vertical density gradient, it therefore returns as a reverse flow just 
above and just below the primary jet. This explanation of reverse flows in two- 
dimensional jets and vertical entrainment in three-dimensional jets is probably 
equally valid for the full non-linear jet problem and in fact some preliminary 
experiments have tended to confirm this. 

The density anomaly s seen from figure 6 ( d )  to be positive above the jet down- 
stream is negative below and hence the downstream jet is likely to be quite 
unstable. As in the two-dimensional case this is not so upstream since the sign 
of the anomaly is reversed. 

Although the results obtained above are for two- and three-dimensional 
stokeslets it seems reasonable that some of the basic features determined will 
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appear in the non-linear jet solution. We would therefore expect two-dimensional 
jets to have reverse flows and no entrainment, three-dimensional jets to have 
entrainment but no reverse flows at finite distance. Downstream jets, it seems 
likely, will be relatively unstable due to the adverse vertical density gradient 
across the jet, upstream jets should be relatively stable. It is likely that vertical 

- 10 
-- 

1 1 1 1  

-0.2 -0.1 0 0.1 0.2 0.3 -0.6 -0.4 -0.2 0 0.2 

-0.2 a -0.1 0 0.1 0.2 0.3 

@> (4 
FIGURE 6. Solutions for the asymptotic diffusive solution functions given in equation (37) .  

(a )  m(0, (b)  sA0, (4 qa(5), (4 g4t6), where 5 = IvlP%. 

velocities will be a t  least an order of magnitude less than horizontal velocities 
and the basic velocity profiles for the three-dimensional jet will be determined 
by the solution of the non-diffusive equations of motion with vertical velocity 
and density anomaly assumed zero. We can, in fact, go further and predict how 
the velocities will decay. 

Consider the x component of the momentum integral for a horizontal jet 

where X is a large surface enclosing the jet and uij the stress tensor. S N O(r2) 
so that if the integral is to converge the velocities must be O(r-I). But if the 
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vertical velocity is O(r-l) then the anomaly term s from (13) must be O(r) .  But, 
a consideration of the y momentum integral 

shows that this is not possible. 
Thus, we may conclude that the horizontal velocities must decay as r-l but 

the vertical velocity must be an order of magnitude smaller, in effect, saying 
that the vertical pressure distribution may be taken as hydrostatic in solving 
the basic velocity profile. An analysis of the non-linear jet exploiting this idea is 
in progress. 
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